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Abstmct 

The structure of gauge anomalies for the fermion 
field coupled to general external fields is analyzed by a 
direct perturbative calculation in four dimensions. The 
anomalies associated with the nonabelian tensor fields 
are shown to cancel identically leaving only the pure 
gauge field anomalies. 
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Chiral anomalies have played an important role in determining the 
structure of gauge field theories. These anomalies reflect the lack of local 
gauge symmetry of chirai ferrnions coupled to gauge fields. In this paper we 
will study the local gauge properties of spinor fields coupled to arbitrary 
external boson fields. We will focus on the anomalies associated with the 
coupling of antisymmetric tensor fields to the fermions. 

The general structure of nonabelian chirai anomalies was first completely 
analyzed by Bardeen’ through a direct calculation of the one fermion loop 
Feyrunan diagrams. In this calculation, explicit dependence of the anomalies 
on the external gauge, scalar, and pseudoscalar was determined. It was 
shown that ail apparent amalieS aSSOdated wlth the Scalar and 
pseudoscalar fields could be removed by appropriate counterterms and 
therefore could be considered as artifacts of the particular computational 
method used to evaluate the diagrams. Since all rerormalizabie field 
theories in four dimensions involve only the coupling of these fields to 
fermions, this previous analysis was sufficient to determine the anomaly 
structure of renormaiizable field theory. However, it may be of interest to 
Study the more general CiaSS of arN?malles which Include the antisymmetric 
tensor f lelds as such coupilngs may be generated as effective interactions of 
a more fundamental theory. induced anomalous magnetic moments are a good 
example. The gauge consistency of the theory which includes these effective 
interactions is determined by absence of anomalies associated with the 
antisymmetric tensor fields. 

The absence of anomalies involving abeiian antisymmetric tensor fields 
was established by Clark and Love2 using the BPHZ rencrmalization methods 
and by Bardeen and GOttlieb3 using the original methods of Ref. I. The 
extension of these results for the tensor anomalies to nmabelian case seems, 
at first, complex but may actually be obtained as a direct extension of the 
methods applied to the abelian case. In this paper we will present the 
results based on the original calculation of Bardeen’ (known as -I- below), 
but the same results may be derived using the BPHZ methods. 

In I, a splnor field is coupled to general vector, axial vector, scalar, and 
pseudoscalar external fields with nonderivative interactions and arbitrary 
internal symmetry. The Lagrangian density is given by 

L = Nz)Ii53 + ~(z)l$(z) 

where the function r(z) is a matrix inDirac space and internal symmetry 
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space. We make the following expansion in terms of fields of different spin 

T(z) = -P+(z) + $V+u(z) + cJp,Tpy(z) (2) 

with 
P,(Z) q Me + C%z) + i’llsIT 

V,p(z) q V&z) + &Au(z) (3) 

T&Z) = TyY(d. 

The vacuum functional for the general spinor loop was computed using a 
particular symmetric point-split regularizaticn procedure and the Ward 
identities examined to confirm the existarce of the spinor loop anomalies. 
In modern parlance, the gauge dependence of the regularized fermion 
determinant was computed and the consistent anomaly determined. Actually 
most of the gauge variance of the point-split vacuum functional could be 
removed by the proper choice of local counterterms and the conventional 
anomaly expression is obtained only after this freedom is exploited. The 
particular form of the counter terms needed is, of course, an artifact of the 
choice of reguiarization procedure and only the final result has an invariant 
meaning independent of this choice. 

We will follow exactly the calculation in I to determine possible tensor 
anomalies. Although the original calculation of the urrenormaiized vacuum 
functional and the related Ward identities was explicitly done for a 
restricted form of external fields, p(z), it is actually valid for the general 
external fields shown in Eq.(Z) which include the tensor fields. With a 
slight change in notation. we can adopt the results of these calculations. 

The urrenormalized vacuum functional, S,(P), is obtained from the 

expansion of the connected spinor loop diagrams, 

exptS,(P)) = <O 1 T{exp[iJdz(~z)r(z)~(z)),l~ 1 O> (4) 

where P(z) = p(z) + tie. Ho is the mass used as the infrared regulator in the 
expansion of the loops. 

The classical action is invariant under the following gauge transform- 
ation of P(z), 
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sAT(z) = sa~+(d - T(z)iA+(z) + iA_(z)T(z) (5) 

or in terms of the component fields, 

s,v+JYz) q ah+(z) - iIV+p(z).A+(t)l, 

SAP+(Z) = -iP+(z)A+(z) + iA-(z)P+(z), 

SI\T~%) = ( I /2)i[A+(z)+A-(z). Tpy(z)l 

+ (1/2)(A+(z)-A-(z), vJq>1, 

(6) 

where the dual transform of Tp’(z) is given by 

Tp”(z) = (I 12) dvar gao( gzs T=@(z), (7) 

and A,(z) = A(z)+-&.(z). The complicated transformation property of the 

tensor field is dictated by the chiral structure of the gauge transformation. 
We note that the combinations (Tp’(z)+-i’Tuv(z)) have definite chirality. 

Llnder a general local ;Kge transformation, the connected vacuum 
functional transforms accordi 0 *re uit previously given in Eq.(l-29). 

8,$&i? q D,(A+.~). 03 

D,(A+,P) is the anomaly for this point-split definition of the vacuum 

functional and can be taken directly from Eq.(I-31). However this form of 
the vacuum functional may be simply renormalized by the counterterms 
contained in R,(T) as given in Eq.(l-37) and the first two terms in R#) as 
given in Eq.(I-39). These counterterms can be considered as functions of 
complete set of external fields, &z). including the tensw fields, and modify 
the form of the point-split anomaly through the relaticns. 

s,(F) = s&i’) - R,(P) - ?I#) 

(9) 
f$,S~(f? = DR(A+,r) = D&A+,f? - S,+,(P) - S,,?i,(P> 

Using the results contained in I, we obtain the renormalized anomaly, 
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D&+,P() = (43’0 i(dZ tr{ (i /36)@r\+(Z) [?f,P(z)~v~Z)%v~~Z) 

+ qw~~P(z)~vRz) + ~Jtzw+wqlz~l (10) 

+ (I /6) IA+(t) i-d-aT(Z)If~aF(Z) - 2fva~P(Z)~,,avP(zll~. 

This result for the renxmalized anunaly is a simple exact form, but we 
have not fully exploited the freedom to add further counterterms. The result 
of Eq.(lO) still contains contributions from the scalar, pseudoScalar, and 
tensor field components of r(z) as well as the usual retributions of the 
vector and axial vector fields. In I, we showed that ail dependence on the 
scalar and pseudoscalar fields could be removed by the proper choice of the 
additional counterterms as given by the remaining terms in Eq.(l-39). 
However that calculation ignored possible contributions of the tensor field 
components. We now do a systematic study of the contributions of ail 
components of the external field. 

The calculations are greatly simplified by the observation that the 
vacuum functional defined through Eq.(9) is invariant under global chiral 
symmetry traffifwmatlons The exlstarce of anomailes reflect the lack of 
local chirai symmetry, but the anomaly derived in Eq.(iO) vanishes for 
constant gauge parameter, A,(z) = A+. as the final terms are a surface 

integral. This global invariance is riot necessarily shared by other forms of 
the anomaly as the possible local counterterms needed to transform from our 
form of the anomaly to the other forms may explicitly break the global 
symmetries. For example the vacuum functional computed using a 
Pauli-Villars OT a BPHZ renormalization scheme is invariant under local 
vector gauge transformations but is not invariant under general global or 
local chiral transformations. Of course, the global chiral symmetries are 
preserved for the ‘left-rlght symmetric’ form of the pure gauge anomaly 
derived in Eq.(l-41). A further SlmpllflcZ!tlon of using the form of the 
arcmaly as given in Eq.(iO) results from the fact that only triangle and box 
diagrams contribute to Eq.(iO) while pentagon diagrams also contribute to the 
anomaly in the Pauli-Villars or BPHZ calculations 

Our subsequent computation requires the decomposition of the external 
field matrix In terms of Its different spin components, P+. V+p, and Tpv as 

given in Eq.(2). We calculate the terms in the anomaly of Eq.(lO) which 
depend explicitly on the Scalar, pseudoscalar, and tensor fields. For the 
quadratic term!% the PP and the TT terms vanish identically while a mixed PT 
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term survives, 

D2pr(A+,P+,T) = - (213) (4c2 i IdZ tr &3,,A+(Zx$,P-(Z) 
+ af-(2)afi-(z)) [TWZ) + i& W(z)II. (I I) 

The chiral structure is obvious and an appropriate counterterm is easily 
determined to be, 

Rs(V+.P+,T) = -(2/3) (470-2 i(dz tr{(V+V(z) af-k) 

+ ag-(z) v-vCz)) [W(z) + i’lls’Tpv(z)l 1 (12) 

The gauge variation of this counterterm produces terms which cancel the 
quadratic part of the mixed PT anomaly. However, the derivatives in the 
expression in Eq.(lZ) generate additional contributions to mixed VPT cubic 
anomaly which must be added to similar terms contained in the expansion of 
the ancmaiy in Eq.(lO). 

The different cubic components to the anomaly obtained after the addition 
of the counter term of Eq.( 12) Include ccxrtrlbutions to the PPV. TTV. PTV 
amplitudes In addltlon to the pure gauge anomalies. All of these components 
can be removed by the appropriate choice of cubic counterterms. A 
systematic but straightforward analysis produces the following set of 
counterterms for these cubic anomalies, 

R.,(v+,P+,T) = (417)~~ i jdz tr{ (I/6)[V+,,(z)V+p(z)P-(z)P+(z)l 

+ ( I / 12)~v+p(z)P-(2)%~(z)P+(z)J 03) 

- (I /36)IV+p(~)T~~(z)V-~(z)T”(z)~(2$,$&,~~~) 

- ( I /I 8)Iv+~(Z)V+p(Z)TM~(z)T~‘(z)l(~v~M~~p~~~) 

- [v+v(z)P~(z)V~~(z)l~T~~(z) + i?$~pv(zel 

- ( 1 /3)[P~(z)V~,(z)V~v(z)llT~v(z) + i’115Tpv(z)I 

- (1 /3)tV+,,(z)V+v(z)P-(z)l~Tpv(z) + i&Tpv(z)l 1. 

The contribution to the anomaly frcfn the counterterm, Rq, comes only from 
the shift terms for the vector fields as all the commutator terms vanish due 
the exact global chiral symmetry. We also note that certain identities for 
the product of gamma matrices, (2C,,uM82fvcsaz), are used to show ananaly 
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cancelation. The addition of the counterterms, Rs and FL+ cancels all 
ananalies involving the scalar, pseudoscalar and tensor fields. The PPVV 
terms in R4 are the same as those given In Eq.(I-39). The minimal form of 
the anomaly. in left-right symmetric form, requires one further set of 
counterterms involving only the vector fields, 

R&J+) = (4?t)-2 i Idz tr{ -( 1 /36)[V+,,(z)V+p(z)V+,,(z)V+y(z) 

- (1~7~~~V+~~~~~+,~~~~+~~z~V+~~z~I 1. (14) 

We summarize the results. The vacuum functional for the spinor loops 
was defined precisely as in I but for more general external fields. Actually 
much of the calculation in I may be directly used. The expression for the 
renormalized anomaly, DR(A+.~O, in Eq.(lO) is taken fran the formulas 

derived in I. Including the contribution of tensor fields, the minimal 
anomaly is obtained by the addition of the specific counterterms. Rs, R4, and 
R5 given in Eqs.(12,13,14). The full vacuum functional is given by, 

5(V+,P+,T) = s,(P) - Rs(V+.P+.T) - RXV+.P+.T) - R50’J’t.T). (15) 

This construction of the vacuum functional prOdUC2S corresponding full 
anomaly. 

D(A+,V+,P+,T) q $$A+,p) - SAR~(A+.V+,P+,T) - ~,$4(1\+,v,,P+,T) 

- $$5(A+,V+.P+,T) 

(16) 

= (l/6) I Jdz Ic,,,,~~ tr( ‘65t2i~~z~a~v+~~z~a~v+~~z~ 

- a~A+O~v+Y~Z~V+Q~Z~V+~~Z~l~ 

which is the result for the “left-right” symmetric anomaly given in Eq.(l-41). 
The inclusion of the external tensor fields does not change the form of the 
fundamental anomaly of the splnor field. 

We have considered the most general, nonderivative coupling of fermions 
to external fields. We have shown, by explicit calculation. that the 
nonabelian anomaly is a property of the vector fields only and does not 
involve other spin external fields in four dimensions. That the vector fields 
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provide the only obstruction to defining the spinor vacuum functional, or 
fermion determinant, can probably be seen more directly through the methods 
of differential geometry+ which are beyond the scope of this paper. 

The methods we have used to determine the structure of the nonabelian 
anomaly are by no means unique. We have mentioned the Pauli-Villars 
reqularization method, and much of this calculation of the tensor anomalies 
has been checked using the E9PH.Z procedure for the spinor loops. Both of 
these methods suffer from the fact that the global chiral symmetry is not 
preserved by the calculational procedure which makes the analysis of the 
tensor field anomalies much more dlfflcult than the analysis presented In 
this paper. 

Our result establishes that the introductionAtensor field couplings 
preserves the local gauge symmetry of the spinor field theory. While this is 
largely a technical result, it does have some immediate implications. In 
considering the low energy effective field theory of a mere fundamental 
dynamics, higher dimensional operators are generated. If the low energy 
field theory Is a gauge theory, then the leading corrxtlor’ts to the theory may 
lf%QlVe IndUCed nonabellan anOmalOUS ITbagtWtlC moment couplings which have 
precisely the form of the tensor couplings we have analyzed. Our result 
establishes the gauge consistency of the low energy effective field theory for 
arbitrary magnetic cuuplirgs. Of course there may well be further 
applications in four and higher dimensions. 
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like to thank the Department of Physics of Purdue llniversity for its 
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